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GENERAL INTRODUCTION 

 

Diabetes and its complications are a steadily increasing cause of mortality worldwide 

and has a significant financial impact on the U.S. to the tune of $245 billion annually as of 2012 

[1]. While there is ongoing research into potential cures for Type 1 diabetes mellitus (T1DM), 

understanding the mechanism behind the increased prevalence of diabetic comorbidities is 

critical to gaining a better understanding of chronic health conditions as a whole. The intention 

of this review of previous literature is to elucidate both the basics of epigenetics, which is the 

alteration of gene expression without changing the physical genetic structure, and the one-

carbon metabolism pathway. During this exploration, the basic pathway will be defined and 

common perturbations to this pathway will be discussed. The relationship between these 

pathway alterations and chronic disease states will be examined with a specific eye towards 

their relationship to diabetes. In chapter 2, the use of a dietary intervention and its effect on 

the changes to one-carbon metabolism will be studied, and the results will be discussed in 

detail. Dietary interventions play a primary role in the treatment of diabetes, and this research 

is evaluating the use of diet in prevention of diabetic comorbidities at the level of one-carbon 

metabolism. 
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CHAPTER 1: LITERATURE REVIEW 

Introduction 

 DNA methylation involves a set of interdependent reactions which, when disrupted, can 

lead to serious metabolic consequences. Methyl groups added to DNA via DNA 

methyltransferase (DNMT) enzymes control gene expression, and are donated almost 

exclusively by the conversion of S-adenosylmethionine (SAM) to S-adenosylhomocysteine 

(SAH). Methyl groups are attached to CpG islands primarily at either the 3’ or 5’ end of the 

gene. CpG islands are a series of attached Cytosines and Guanines in the nucleic acid sequence, 

connected by a phosphodiester bond.  Genes are transcribed as RNA polymerase II (Pol II) 

travels from the 5’ end of a gene towards the 3’ end of a gene matching a new set of 

nucleotides, thereby forming a new chain of RNA. Pol II has been shown to pause and 

accumulate just before promoter regions, a method of regulating RNA and controlling gene 

expression. The signaling for this pause is the methylation of promoter regions of the gene, 

which blocks Pol II and leads to its eventual release from the gene, preventing gene 

transcription. DNA methylation at the 3’ end of a gene can result in a more stable mRNA strand. 

The methylation of the 3’ end also causes Pol II to pause transcription allowing for a more 

efficient termination of transcription [2]. 

Counter to the DNA methylation pathway, there exists an active method of DNA 

demethylation. In order for a methyl group to be removed from a CpG island, it must first 

undergo several conformational changes. The ten-eleven-translocase (TET) family of enzymes 

are responsible for catalyzing these changes. TET1 can oxidize 5-methylcytosine (5mC) to 5-

hydroxymethylcytosine (5hmC), which can then be oxidized to 5-formalcytosine (5fC) by TET2, 



www.manaraa.com

2 

 

which can be further oxidized by TET3 to 5-carboxycytosine (5caC). Both 5fC and 5caC can be 

actively converted back to cytosine by thymine DNA glycosylase (TDG) mediated base excision 

repair [3]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: DNA Demethylation Pathway 
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One-carbon metabolism 

 

 

 

 

 

 

 

 

Figure 2: DNA Methylation Pathway 

 

SAM is generated from the adenylation of methionine by methionine 

adenosyltransferase (MAT). Depending on the tissue, MAT can have several different isoforms. 

MAT I and MAT III are expressed in the liver and MAT II is not. MAT I and MAT II are 

allosterically inhibited by SAM. MAT III is not regulated by SAM, which allows for the prevention 

of methionine build-up when SAM is abundant.  

 SAM can undergo many different transmethylation reactions. The previously described 

DNMT reaction combines SAM and an unmethylated CpG island. The result of the 

transmethylation is SAH and methylated DNA, with the methyl group from SAM being removed 
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and placed onto the CpG island. Other key methyltransferases include 

phosphatidylethanolamine N-methyltransferase (PEMT), Glycine-N-methyltransferase (GNMT), 

and guanidinoacetate N-methyltransferase (GAMT). Combined, PEMT, responsible for creating 

phosphatidylcholine, and GAMT, responsible for creatinine synthesis, account for 85% of all 

transmethylation reactions that are SAM dependent [4]. GNMT maintains the SAM:SAH ratio by 

accepting the methyl group from SAM and attaching it to glycine to form sarcosine [5, 6]. SAH 

hydrolase cleaves the adenosyl group off SAH, leaving homocysteine which has several 

important pathways through which it can proceed. Homocysteine can be methylated to 

regenerate methionine via a folate-dependent pathway or a folate-independent pathway.  

 

The folate-dependent pathway 

The folate-dependent pathway occurs in all bodily tissues and involves a B12 dependent 

transmethylation reaction where methionine synthase (MS) converts homocysteine to 

methionine. 5,10-methylenetetrahydrofolate is converted to 5-methyltetrahydrofolate by 

methylenetetrahydrofolate reductase (MTHFR). Subsequently, 5-methyltetrahydrofolate has its 

methyl group removed by MS and added to homocysteine regenerating methionine. The 

remaining folate is in the form of tetrahydrofolate (THF). Folate cannot be synthesized in the 

human body, making this pathway dependent on dietary intake. Folate is absorbed from the 

diet in the form of THF, which is converted to 5,10-methylenetetrahydrofolate for its use in this 

pathway. This transmethylation pathway ties back into SAM and SAH regulation because 5-

methyltetrahydrofolate allosterically inhibits GNMT, which increases SAM levels when they 
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become low. High SAM levels can inhibit MTHFR activity, which allows GNMT to return SAM 

levels to normal [5]. 

 

The folate-independent pathway 

The folate-independent pathway occurs predominately in the liver and kidneys and 

regenerates methionine from homocysteine using betaine (trimethylglycine, TMG) as the 

methyl donor. Choline from the diet is oxidized to TMG. Betaine-homocysteine S-

methyltransferase (BHMT) transfers a methyl group from TMG to homocysteine, resulting in 

the regeneration of methionine and leaving dimethyl glycine (DMG). This pathway also has a 

regulatory function where elevated SAM levels inhibit BHMT, decreasing homocysteine 

recycling and lowering SAM levels. When SAM levels are depleted, BHMT activity is not 

inhibited, increasing homocysteine recycling and returning SAM levels to normal [7]. 

 

Glutathione pathway 

Homocysteine can also be converted to cysteine via the B6 (PLP) dependent 

cystathione-β-synthase (CBS). CBS catalyzes a transsulfuration reaction that is allosterically 

regulated by SAM. Homocysteine is converted to cystathionine through a a transsulfuration 

reaction with serine. Subsequently γ-cystathionase converts cystathionine to cysteine. Cysteine 

can then be utilized by the body or γ-glutamylcysteine synthetase can combine glutamate and 

cysteine to form γ-Glutamylcysteine. Glycine and γ-Glutamylcysteine are then condensed into 
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glutathione through a reaction catalyzed by Glutathione synthetase [8]. Glutathione acts as a 

primary antioxidant in the body as glutathione peroxidase catalyzes a reaction between 2 GSH 

molecules and a hydrogen peroxide radical. The resulting oxidized glutathione (GSSG) can then 

be reduced by other antioxidants like ascorbic acid or by the conversion of NADPH + H+ to 

NADP+ and water. 

 

Diseases and methylation 

While adequate dietary intake of folate, B6, B12, choline, and protein is essential for 

regulating one-carbon metabolism and maintaining optimum health in a healthy person, this is 

not necessarily sufficient in certain medical conditions. In regards to one-carbon metabolism, 

folate is required for the recycling of homocysteine through the donation of a methyl group. 

Folate deficiency is most commonly associated with neural tube defects during fetal growth [9]. 

5,10-methylenetetrahydrofolate donates a methyl group to deoxyuridine monophosphate to 

create thymidine monophosphate, a reaction catalyzed by thymidylate synthetase. Thymidine 

monophosphate is a nucleic acid needed for DNA synthesis leading folate to play a crucial role 

in protein regulation, red blood cell formation, and the development of some cancers [10, 11]. 

In addition to limiting the rate at which MS can regenerate methionine from homocysteine by 

limiting the substrate THF, inadequate dietary intake of folate can inhibit gene expression by 

negatively impacting DNA synthesis [10]. B12 is a key cofactor for MS function and inadequate 

B12 intake can also limit the ability of MS to function correctly.  
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PLP is a cofactor for CBS which is a key enzyme in the synthesis of glutathione, a major 

antioxidant. Reactive oxygen species are strongly linked with CVD, cancer, retinopathy, 

osteoporosis, and any number of other serious medical conditions [12-14]. Choline is also an 

important dietary factor with regards to one-carbon metabolism. Choline provides the 

substrate for BHMT to convert homocysteine to methionine. Deficiencies in all of these 

molecules result in increased levels of homocysteine as it cannot be converted to either 

methionine or cystathionine.  

In addition to dietary factors, genetics can also be a source of perturbations of one-

carbon metabolism. A polymorphism to the MTHFR gene can severely inhibit the folate-

dependent pathway of methionine regeneration. The most common polymorphism to the 

MTHFR gene is a single nucleotide, C677T, which has been linked to hyperhomocysteinemia and 

disruptions to one-carbon metabolism [15, 16]. 

As of 2012, 29 million U.S. citizens had diabetes with 1.4 million people being diagnosed 

with diabetes every year [17]. Diabetes and its comorbidities have strong ties to altered DNA 

methylation. Diabetes itself disturbs one-carbon metabolism through increased secretion of 

glucagon and cortisol. In previous research, cortisol increased GNMT activity, a perturbation 

seen in diabetics [18, 19]. This alteration to one-carbon metabolism plays a role in altered gene 

expression, increasing the prevalence of diabetic comorbidities. 

A study of both Type 1 and Type 2 diabetics in Australia found a significantly increased 

risk for numerous types of cancers [20]. Certain cancers, like liver cancer, are linked to 

perturbed DNA methylation. For example, rats fed a low methyl diet will form liver tumors [21, 
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22]. Studies have also shown strong correlations between CVD and altered one-carbon 

metabolism due to perturbations of homocysteine concentrations. Hyperhomocysteinemia is 

an independent risk factor for CVD, but hypohomocysteinemia can also be problematic as it 

limits the synthesis of glutathione, a crucial antioxidant. The peroxidation of lipoproteins is an 

important step in the development of CVD, a process normally kept under control by 

glutathione. Since CVD is the most common cause of death among diabetics, it seems there is a 

relationship between altered one-carbon metabolism, diabetes and its comorbidities [23]. 

 

Non-alcoholic fatty liver disease 

 Non-alcoholic fatty liver disease (NAFLD) is a potential precursor to liver cancer and 

affects 50% of diabetic patients [24]. Choline is a key molecule in the synthesis of very low 

density lipoproteins (VLDL), the primary carrier of triglycerides secreted by the liver. 

Phosphatidylcholine is formed from the methylation of phosphatidylethanolamine by PEMT in 

the liver, or from choline from the diet. Without phosphatidylcholine to form VLDL, triglycerides 

cannot by transported out of the liver and will accumulate leading to NAFLD [25]. A study of 

DNA methylation patterns in rats fed a low choline diet found gene specific hypermethylation 

accompanied a global trend of demethylation. Six-week-old male rats were fed a choline-

deficient L-amino acid-defined diet, some of which were sacrificed at 4 days, 8 days and 3 

weeks. Methylation of genes E-cadherin, Cx26, Rassf1a, c-myc, and c-fos was specifically 

measured. In the low choline diet, E-cadherin, Cx26, and Rassf1a were all methylated, whereas 

in normal livers these genes were unmethylated [21, 22]. However, both c-fos and c-myc were 
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methylated in the livers of control rats, but both genes were hypomethylated in the livers of 

rats fed low choline diets. This study suggested gene-specific hypermethylation patterns in the 

development of hepatocarcinogenesis, as both c-fos and c-myc are known oncogenes [21, 22]. 

The trend of global hypomethylation with gene specific hypermethylation is a trend seen in 

numerous types of cancer.  

 

Oxidative stress 

The exact mechanism(s) between diabetes and its comorbidities is not known. Increased 

oxidative stress and/or protein glycation are supported by research as possible mechanisms 

[26]. Diabetes has been shown to increase levels of malondialdehyde (MDA), glycosylated 

hemoglobin (GHb), nitric oxide (NO), advanced glycation endproducts (AGEs), advanced 

oxidation protein productions (AOPPs), and thiobarbituric acid reacting substances (TBARS), 

which are all circulating biomarkers of oxidative stress [26]. At the same time, diabetes has 

been shown to lower levels of GSH, and decrease superoxide dismutase (SOD) activity, catalase 

(CAT) activity, and ceruloplasmin (Cp) activity, all key molecules in the body’s defense against 

oxidative stress [26]. Copper ions play a significant role in the defense against oxidative stress. 

Ceruloplasmin and SODs are copper containing molecules, whose activity is severely inhibited in 

a hyperglycemic state. The inhibition of SOD activity in diabetics is due to the loss of both Zn2+ 

and Cu2+ from the enzyme [27, 28]. In a study of the effect of diabetes on trace element 

metabolism, Cu2+ plasma levels increased significantly while Mg2+, Ca2+, and Zn2+ levels all 

dropped significantly. The increased Cu2+ levels are caused by glycation and release of Cu2+ 
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ions from copper-containing enzymes, which is supported by the decreased reactivity of SOD 

and Cp. In addition to decreased activity of antioxidant enzymes, the increased plasma copper 

levels accelerate the creation of reactive oxygen species. The transition from O2- to H2O2 is a 

process normally controlled by SOD. However, glucose autoxidation, which can be catalyzed by 

Cu2+ ions, increase the production of H2O2, OH- , O2- and ketoaldehydes [27]. Ketoaldehydes 

are protein reactive molecules that can fragment normal proteins via free radical mechanisms 

[29]. Increased AOPPs are evidence of increased protein glycation, and specifically relate back 

to CVD. Diabetes is associated with increased levels of LDL that has been glycated or oxidized 

[30]. Oxidized LDL promotes atherogenesis through increased levels of TBARS [31]. Heinecke et 

al. [32] proposed that levels of TBARS are increased due to copper ions catalyzing lipid 

peroxidation, increasing LDL oxidation in diabetics. 

 Reduced glutathione levels were also decreased in diabetics. Glutathione is a major 

antioxidant in the body, and 2 GSH molecules are oxidized to GSSG, which can then be reduced 

by vitamin C or other dietary antioxidants. Glutathione is produced via the previously described 

transsulfuration pathway. This pathway is blocked in diabetes; γ-glutamyl-cysteine synthetase 

activity is inhibited by a lack of Mg2+ ions, which prevents the combination of cysteine and 

glutamate to form glutathione [33]. This leads to the build-up of cysteine seen in diabetics [33].  

Oxidized glutathione is normally reduced back to GSH, keeping GSH concentrations relatively 

static. However, glutathione reductase, the FAD dependent enzyme catalyzing the reduction of 

GSSG to GSH, is inhibited by high circulating levels of copper ions [34]. This means that in 

addition to a lack of new glutathione production, existing glutathione has been removed from 

circulation due to a lack of active reduction reactions.  
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Nephropathy 

AGEs result from the increased rate of protein glycation due to hyperglycemia seen in 

diabetes mellitus. Frequent and/or prolonged bouts of hyperglycemia lead to the accumulation 

of AGEs which have been shown to accumulate in the kidneys at higher rates among diabetics 

[35]. This accumulation is specific to the mesangial cells, renal tubules, and glomerular 

basement membranes [36, 37]. This AGE accumulation can increase production of glomerular 

extracellular matrix α1 (IV) collagen, laminin B1, and transforming growth factor β [38]. AGEs 

may also be able to crosslink or chemically modify matrix or plasma proteins. All these factors 

build towards basement membrane thickening, glomerular hypertrophy, and mesangial 

extracellular matrix expansion, which are linked to glomerulosclerosis progression, proteinuria, 

and albuminuria [39]. This shows a pathogenic pathway linking hyperglycemia to nephropathy. 

 

Retinopathy 

Similar to the mechanism above, AGEs accumulate in the neuroglia and retinal vessels of 

people with diabetes and there is an apparent cell-type specific pattern of accumulation of 

AGEs [40-43]. Recent research has shown that if preformed AGE albumin, albumin that has 

intentionally been glycated, is injected into non-diabetic rats it will accumulate in the 

microvasculature of the retina, specifically in pericytes and smooth muscle cells. These two cell 

types are of note since they undergo early cell death during diabetic retinopathy [44, 45]. 
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AGEs and DNA methylation are intertwined in that DNA hypomethylation can prevent 

the body from being able to remove AGEs from the system. For example, a study on wound 

healing in diabetic foot ulcers found an abnormally high expression of matrix 

metalloproteinase-9 (MMP-9), which can suppress wound healing. AGEs were found to increase 

the expression of MMP-9 in skin primary keratinocytes [45]. It was shown that TET2 

upregulation and MMP-9 promoter demethylation were both present in diabetics, providing an 

explanation for poor wound healing seen in diabetics [45]. As previously mentioned, T1DM is 

associated with increased activation of the demethylation pathway including TET2, and this 

study highlights the link between the body’s ability to defend against AGEs and DNA 

methylation [46]. 

 

Hypomethylation 

There are two known pathways that result in a hypomethylated state. Decreased levels 

of methyl donors (SAM), as was seen in rats on low methyl diets, results in the decreased ability 

to add methyl groups to DNA. Increased activity of the pathway responsible for removal of 

methyl groups from DNA is also a possibility, where the methyl groups removed from DNA are 

reintroduced to the one-carbon metabolism pathway. The most likely scenario is a combination 

of the two pathways where both a lack of methyl donors and an increase in DNA demethylation 

occur simultaneously.  

Numerous studies have shown altered levels of substrate components in one-carbon 

metabolism pathways in various disease states. While looking at the effect of diabetes on 
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wound healing, Dhliwayo et al. [3] found that Type 1 diabetes induced increased levels of 5hmC 

and 5fC in zebrafish. This coincided with increased levels of TET family enzymes and increased 

TDG activity, supporting the hypothesis that T1DM results in increased removal of methyl 

groups from DNA to supplement depleted SAM levels. Williams et al. [47] studied the effect of 

uncontrolled diabetes on hepatic DNA methylation over an 8 week period. Williams found 

increased activity and abundance of GNMT and increased activity of phosphatidylethanolamine 

N-methyltransferase (PEMT). Increased GNMT activity indicates methyl groups being bled off 

for purposes other than DNA methylation, and increased PEMT is used in the natural creation 

of choline in the body from phosphatidylcholine. They found increased BHMT activity and 

decreased MS activity, which indicated a shift away from the folate-dependent pathway and 

towards the folate-independent pathway for methionine regeneration. While not studied, the 

preferential utilization of the folate-independent pathway could be due to the end product of 

DMG, which has been shown to have some antioxidant properties [48]. The enzymes 

dimethylglycine dehydrogenase and sarcosine dehydrogenase can convert DMG to glycine in 

rat livers. Glycine is a required substrate for GNMT transmethylation, and is more readily 

produced by heavy reliance on the folate-independent pathway through the conversion of 

DMG to glycine. While tied more closely with T2DM, a genome-wide association study showed 

a significant correlation between low plasma DMG levels and high blood glucose concentrations 

[49]. Williams et al. also found an increased abundance of CBS indicating that T1DM results in 

the increased conversion of homocysteine to cystathionine; however the downstream synthesis 

of glutathione is limited such that hepatic levels of glutathione (GSH) are decreased and 

decreased levels of GSH is a risk factor for atherosclerosis [50, 51]. This supports the hypothesis 
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that DMG is preferentially produced for its antioxidant properties, and that the body reacts to 

diabetic hyperglycemia by increasing antioxidant production to account for the loss of both SOD 

to glycation and glutathione to inhibition. Williams et al. also found that both SAM and SAH 

levels, as well as the SAM:SAH ratio did not differ between T1DM rats and control rats. This 

could be due to dietary replenishment or a possible explanation for the increased removal of 

DNA methylation. As homocysteine is being removed from circulation at an increased rate, less 

is being recycled to methionine and some deficit would seem inevitable without significant 

dietary intervention. If the methyl groups removed from DNA can re-enter the cycle as 

methionine, this could provide a possible explanation for the lack of change in absolute values 

of SAM and SAH.  

The alteration to homocysteine remethylation could be a key factor in understanding 

the long term effects of diabetes. In T1DM patients without renal complications, plasma 

homocysteine levels were decreased compared to a person without diabetes [51]. Insulin 

treatment returned homocysteine levels to normal in a dose dependent manner [52]. This is 

important because homocysteine can form reactive oxygen species (ROS) in plasma and 

decrease glutathione (GSH) peroxidase activity,  the enzyme catalyzing the oxidation of 

glutathione [53]. This would seem to indicate diabetics are at risk for CVD complications during 

both hyperglycemia through protein glycation and hypoglycemia through insulin induced GSH 

inhibition.  

Another aspect of this reaction is increased glucagon and cortisol secretion. Rats treated 

with doses of glucagon showed decreased levels of homocysteine, but increased activity of 



www.manaraa.com

15 

 

GNMT, CBS, BHMT, and cystathionine gamma-lyase in the liver. Levels of SAM and SAH were 

also increased [54, 55]. Similarly, dexamethasone treated rats had increased GNMT activity [18, 

19]. In STZ-induced diabetic rats, glucagon secretion was elevated at baseline and in response 

to arginine. These increases were not inhibited to the same degree by high concentrations of 

glucose or high doses of insulin compared to control. However, glucagon secretion was 

inhibited by insulin when endogenous secretion was relatively high. This is an important 

distinction in that it provides a potential explanation for the hypermethylation seen in T2DM. If 

the perturbations to one-carbon metabolism are due to excessive glucagon, insulin-

independent diabetics would not necessarily experience the same issues because the glucagon 

secretion is normalized by the endogenous secretion of insulin. This indicates that in STZ-

induced diabetes, hyperglucagonemia could be responsible for the changes to one-carbon 

metabolism and subsequent transmethylation reactions [56]. 

 T1DM was also shown to increase DNMT1 abundance, which initially seems 

counterintuitive with the global hypomethylation seen with T1DM. Recent research has shown 

that DNMT1 has a higher affinity for DNA strand breaks, gaps, and uracil than for partially 

methylated CpG islands. DNA strand breaks, gaps, and uracil are common in the early stages of 

folate and methyl deficiency [57]. Diets low in methionine, choline, and folic acid were 

associated with DNA strand breaks and global hypomethylation and increased DNMT activity 

[58]. Hypomethylation decreased the stability of chromatin structure, making it more 

vulnerable to DNA-damage [58]. Diabetes has the potential to induce choline deficiency by 

over-activation of the folate-independent pathway due to the use of choline, converted to 

betaine, as the primary methyl donor for the regeneration methionine. This would lead to 
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similar genetic outcomes as a low methyl diet. This coincides with recent research into diabetes 

showing global hypomethylation and increased DNMT activity.  

In human pre-neoplastic cells, DNA strand breaks and gaps are frequently seen, showing 

a link between diabetic hepatic hypomethylation and liver cancer among diabetics. Williams’ 

results showed hepatic CpG hypomethylation and a trend towards increased genomic DNA 

hypomethylation in T1DM rats [47], which supports the previous studies findings. 

Given the switch of primary remethylation pathways of homocysteine from folate-

dependent to folate-independent, the question becomes: Is choline abundance, or lack thereof, 

a limiting factor in maintaining one-carbon metabolism and subsequent DNA methylation. Eggs 

provide an excellent opportunity to increase three key substrates into one-carbon metabolism 

to test this theory. Eggs have around 250mg of choline per 100g of egg [59]. Eggs also have 

upwards of 144mg cysteine and 242mg of methionine per egg [60]. The choline provides the 

methyl donor for BHMT to convert homocysteine to methionine, the cysteine has the potential 

to regulate the glutathione pathway by reducing the need for de novo synthesis from 

homocysteine, and methionine increases the amount of substrate for adenylation to SAM. This 

makes eggs an ideal dietary vehicle to determine whether one-carbon metabolism is inhibited 

by the lack of substrate availability in diabetics. 
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CHAPTER 2: THE EFFECT OF WHOLE EGG ON DNA HYPOMETHYLATION IN MALE 

STZ-INDUCED DIABETIC RATS 

 

ABSTRACT 

Diabetes mellitus is linked with a higher risk of cardiovascular disease and certain types 

of cancer [61-63]. A study of Type 1 and Type 2 diabetics in Australia showed multi-fold 

increases in the risk for several types of cancer. Diabetics are also two to four times more likely 

to have CVD than an adult without diabetes. The common thread among these three medical 

conditions is oxidative stress. To date, little work has been done on the impact of dietary 

intervention on the body’s ability to handle the increased oxidative stress caused by diabetes. 

In this study, male Sprague-Dawley rats were fed a high choline diet for 4 weeks (3 weeks 

acclimation and 1 week experimental). Diabetes was induced using STZ and after 1 week the 

rats were sacrificed and liver tissue was harvested for study. There was a significant decrease in 

GNMT abundance between the non-diabetic control and whole egg diet groups, but not 

between the diabetic control group and whole egg diet group. There was no attenuation of 

hepatic hypomethylation in the group fed the high choline diet in comparison to the diabetic 

control group (P = .121). No significant difference was seen in serum TG levels between groups 

(P = 0.462). 
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INTRODUCTION 

In 2014, an estimated 9% of adults globally had diabetes mellitus [64]. The World Health 

Organization predicts that by 2030, diabetes will be the 7th leading cause of death, moving 

ahead of HIV/AIDS and diarrheal diseases common in the developing world [65]. This is a very 

misleading statistic though, as diabetes is rarely listed as the cause of death. A 2001 study 

showed that 50% of people with diabetes die of cardiovascular disease, which is then recorded 

as the cause of death [66]. Harding et al. recently found a trend towards increased cancer risk in 

people with diabetes, specifically liver cancer, which had a 3 fold increase in the incidence rate 

[20]. The cost for treating diabetes has risen from $147 billion in 2007 to $245 billion in 2012 

prompting a huge influx of studies in regards to health outcomes for diabetics [1]. 

 However, little work has been conducted in the area of dietary interventions on DNA 

methylation in diabetes. Williams et al., studied the effects of diabetes on one-carbon 

metabolism by comparing an STZ-induced hyperglycemic state to a normoglycemic state [47]. 

Results showed normal levels of SAM, SAH, and SAM to SAH ratio, as well as increased 

abundance of DNMT1, and increased hepatic GNMT activity. Dhliwayo et al., studied the 

demethylation mechanism of diabetes in zebrafish and found increased activity of ten-eleven 

translocase 2 and 3, increased Thymine-DNA glycosylase (TDG), in addition to increased 

presence of 5-hyrdoxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine 

[3]. These results combine to suggest that increased rates of demethylation likely contribute to 

hepatic demethylation in diabetes. Providing further evidence of this, rat studies have shown 

rats fed a low methyl group diet have consistently developed liver cancer within a year [67]. 
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This showed a strong relationship with disturbed one-carbon metabolism and liver cancer, 

which coincides with disrupted one-carbon metabolism in the liver triggered by diabetes. The 

disruption of one-carbon metabolism by diabetes is due to the increased secretion of glucagon 

and cortisol. Cortisol increases GNMT activity, a key enzyme in the regulation of one-carbon 

metabolism. 

 The Dhliwayo and Williams studies each establish a baseline measure of diabetic one-

carbon metabolism for a piece of the overall pathway. However, neither answers the question 

as to whether disruptions to one-carbon metabolism caused by diabetic hyperglycemia can be 

remedied through dietary intervention. We sought to fill this gap in knowledge by not only 

looking at GNMT and DNA methylation like the Williams and Dhliwayo studies, but also looking 

at the impact of a whole egg diet on the changes to DNA methylation seen with diabetes. The 

combination of these methods will give a more complete picture of diabetes-induced changes 

to one-carbon metabolism, and the impact of choline on both aspects of methylation. 

 

MATERIALS AND METHODS 

All animal studies were approved by the Institutional Animal Care and Use Committee, 

and Iowa State University Laboratory Animal Resource Guidelines were followed. Male 

Sprague-Dawley rats (N=18) were individually housed in clear plastic cages on a 12 hour light-

dark cycle. Rats were divided into 3 groups: a non-diabetic control group, a diabetic control 

group, and an intervention group. The two control groups were fed ad libitum on a diet 

containing 20% protein by weight from casein, the diabetic intervention group was fed a diet 
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where the 20% protein came entirely from whole egg (Table 1). Following a 24 day acclimation 

period, the diabetic control group (n=6) and intervention group (n=6) were given an 

intraperitoneal injection of Streptozotocin (STZ; 60 mg/kg bodyweight) to induce diabetes. 

After 1 week, the rats were fasted for 24 hours and blood glucose was measured to ensure 

hyperglycemia in the diabetic groups. All three groups were anesthetized by intraperitoneal 

injection of ketamine (90:10 mg/kg bodyweight). Whole liver tissue was snap frozen in liquid 

nitrogen for later study (Figure 1). 

Liver concentration of DNA methylation was quantified using a commercially available 

colorimetric ELISA kit (EpiGentek, New York). DNA was extracted from a lysate by the Autogen 

Quickgene810 DNA Isolation machine. A lysate was formed following the Autogen QG-810 

protocol. 

Hepatic GNMT abundance was measured using a commercially available colorimetric 

assay kit (MyBioSource, California). Liver tissue was homogenized in phosphate buffered saline 

solution with 100ul of proteinase and 100ul of EDTA at a ratio of 10:1 PBS to liver tissue (0.1g 

tissue to 1mL PBS). Statistics were calculated using SigmaStat (Systat, Chicago, IL).  

Serum levels of triglycerides were also measured using a commercially available 

colorimetric assay kit (BioAssay Systems, San Francisco). Plasma was diluted 5-fold to allow 

comparison to standards before being assayed.  

Colorimetric assay plates were read on a BioTek Synergy H1 Hybrid Reader. Group 

means were compared using a one-way ANOVA, and Fisher LSD post-test with a p value of 0.05. 
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RESULTS 

A high choline (whole egg) diet did not significantly change hepatic DNA methylation 

(P = .121, one-way ANOVA). Total hepatic DNA methylation was 1.56% in the non-diabetic 

control group, 0.94% in the diabetic control group, and 1.3% in the whole egg diet group. The 

diabetic control group showed a significant (39.7%) drop in global DNA methylation compared 

to the non-diabetic control group (P = 0.044), while the whole egg diet group had a 17% 

reduction in global DNA methylation. This puts the whole egg dietary group in the middle of the 

two control groups leaving it without statistical significance (Figure 2). 

A high choline diet significantly decreased hepatic GNMT abundance. GNMT 

abundance was not significantly different between the non-diabetic control group and the 

diabetic control group. The non-diabetic control group had 114.7 + 3.95 ng/g of GNMT in liver 

tissue, while the diabetic control group showed 99 + 16 ng/g. The whole egg diet group had 

88.4 + 6.5 ng/g, a significant reduction in comparison to the non-diabetic control group; 

however, it was not significantly different from the diabetic control group (Figure 3). 

A high choline diet did not significantly change serum triglyceride levels. While a 

diabetic condition is associated with increased serum triglyceride concentrations, the 

differences between groups in this study were not significantly different (P = 0.462), and there 

was no impact by high choline intake (Figure 4). 
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DISCUSSION 

 Previous research showed increased GNMT activity in diabetic rats[47]. Our experiment 

did not show a significant difference in GNMT abundance between groups. This is possibly due 

to the experimental model where the rats were only diabetic for 1 week. Previous work 

showing increased GNMT expression had samples taken starting at two weeks from diabetic 

inducement. It is likely that 1 week is not enough time to see the induced changes in GNMT. 

However, our results did show a significant decrease in GNMT abundance in the whole egg diet 

group compared to the non-diabetic control group. This points to a possible ability of a high 

choline diet to reduce the increased GNMT expression seen in T1DM. As one of the hypotheses 

regarding DNA hypomethylation is lack of substrate availability due to increased conversion of 

SAM to SAH by GNMT, the ability of the high choline diet to mitigate or prevent this change in 

abundance becomes critical to preventing DNA hypomethylation and its subsequent negative 

outcomes. This is supported by the change seen with total hepatic DNA methylation. The whole 

egg dietary group cut the rate of hypomethylation in half compared to the diabetic control 

group. This could be due to increased SAM availability or some as yet unknown mechanism.  

Going forward, it will be critical to evaluate the impact of the whole egg diet over a 

longer period of time. If the rate of hypomethylation is merely slowed, there will come a point 

where DNA hypomethylation will drop to the same level as the diabetic control group. On the 

surface, this would seem to limit the usefulness of the high choline diet, but it retains its 

usefulness when translated to humans. Insulin therapy significantly decreases the rate at which 
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DNA is de-methylated. However, after an initial diagnosis of T1DM, human beings will undergo 

a potentially prolonged period of glycemic instability as the complexities and individual 

characteristics of diabetes are figured out. This time period is fraught with perturbations to 

one-carbon metabolism and subsequent DNA hypomethylation. This would provide an ideal 

time for a high choline diet to limit the damage being done over a relatively small time period, 

aiding in the prevention or slowing down the rate of progression for chronic diseases associated 

with T1DM.  

Serum triglycerides were measured due to the high incidence of hypertriglyceridemia 

among diabetics. Previous work has shown that hyperglycemia can cause increased plasma 

triglyceride levels in diabetic rats [68]. This could be due to hyperglycemia causing favoritism of 

the folate-independent pathway of one-carbon metabolism. This limits the availability of 

choline, which over time leads to NAFLD. There is a strong, positive correlation between serum 

triglycerides and NAFLD [69]. By adding large amounts of choline, we hoped to show reduction 

in serum triglyceride levels as means of showing possible prevention of NAFLD. Serum TG 

concentrations, and not liver TGs, were measured because dyslipidemia is an early sign of 

NAFLD. None of the three dietary groups showed significant differences, which is again likely 

due to the shortened time frame. One week is not enough time to see significant changes to 

serum triglyceride levels. Similarly, four weeks on the high choline diet also did not show any 

changes to triglyceride levels in the rats. To our knowledge, this is the first exploration of 

dietary intervention in the prevention of DNA hypomethylation in diabetics. 
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Table 1: Nutrient breakdown of control and experimental diets. 
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Figure 3: Experimental design. 



www.manaraa.com

26 

 

 

Figure 4: Percent Total Hepatic DNA methylation. Data shown as mean + SEM. Letters indicate 

significant differences between groups (p<0.05). 
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Figure 5: GNMT abundance in liver tissue. Data shown as mean ± SEM. Letters indicate 

significant differences between groups (p<0.05). 
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Figure 6: Serum triglyceride levels. Data shown as mean ± SEM. Letters indicate significant 

differences between groups (p<0.05). 
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